Introduction to Programming

Matrix Multiplication

The following program will add two "square arrays." Note the change from the code we worked on in class.

```
\# add 2 square matrices
def add(a,b):
    lena=len(a)
    \(\mathrm{x}=[\) lena*[0] for i in range(lena)]
    for \(i\) in range(lena):
        for j in range(lena):
            \(x[i][j]=a[i][j]+b[i][j]\)
    return x
\(\mathrm{x}=[[1,1],[1,1]]\)
\(\mathrm{y}=[[1,1],[3,4]]\)
\(\mathrm{c}=\operatorname{add}(\mathrm{x}, \mathrm{y})\)
print(c)
```

Write a function mult(a, b) that will "multiply" the two square matrices $a \operatorname{and} b$ as we discussed in class.

If we write $c=m u l t(a, b)$ then $c[i][j]$ will be the dot product of row i of matrix a with column j of matrix b.

Recall that if we have 2 lists a and b of the same size, then we can define dot as follows:

```
z=[1,2,3]
v=[4,5,6]
def dot(a,b):
    lena=len(a)
    g=0
    for i in range(lena):
        g=g+a[i]*b[i]
    return g
print(dot(z,v))
```


Problem

1. Ask your user for an integer n.
2. Create two nXn matrices (two dimensional lists) filled with random integers. Call one A and the other B .
3. Print A and B.
4. Multiply (by using the matrix multiplication algorithm) A and B to get matrix C.
5. Print matrix C.
6. Go back to step 1 and repeat until the user enters "done".

Test out your function on matrices of various sizes. The values in the matrices should be generated by using randint(). I would suggest using small random numbers so that it will be easier for you to check.

